Quantcast
Channel: Hacker News 50
Viewing all articles
Browse latest Browse all 9433

algorithm - What does O(log n) mean exactly? - Stack Overflow

$
0
0

Comments:"algorithm - What does O(log n) mean exactly? - Stack Overflow"

URL:http://stackoverflow.com/questions/2307283/what-does-olog-n-mean-exactly/2307314#2307314


O(log n) refers to a function (or algorithm, or step in an algorithm) working in an amount of time proportional to the logarithm (usually base 2 in most cases, but not always, and in any event this is insignificant by big-O notation*) of the size of the input.

The logarithmic function is the inverse of the exponential function. Put another way, if your input grows exponentially (rather than linearly, as you would normally consider it), your function grows linearly.

O(log n) running times are very common in any sort of divide-and-conquer application, because you are (ideally) cutting the work in half every time. If in each of the division or conquer steps, you are doing constant time work (or work that is not constant-time, but with time growing more slowly than O(log n)), then your entire function is O(log n). It's fairly common to have each step require linear time on the input instead; this will amount to a total time complexity of O(n log n).

The running time complexity of binary search is an example of O(log n). This is because in binary search, you are always ignoring half of your input in each later step by dividing the array in half and only focusing on one half with each step. Each step is constant-time, because in binary search you only need to compare one element with your key in order to figure out what to do next irregardless of how big the array you are considering is at any point. So you do approximately log(n)/log(2) steps.

The running time complexity of merge sort is an example of O(n log n). This is because you are dividing the array in half with each step, resulting in a total of approximately log(n)/log(2) steps. However, in each step you need to perform merge operations on all elements (whether it's one merge operation on two sublists of n/2 elements, or two merge operations on four sublists of n/4 elements, is irrelevant because it adds to having to do this for n elements in each step). Thus, the total complexity is O(n log n).

*Remember that big-O notation, by definition, constants don't matter. Also by the change of base rule for logarithms, the only difference between logarithms of different bases is a constant factor.


Viewing all articles
Browse latest Browse all 9433

Trending Articles